
Challenges and Opportunities: Preparing
PIConGPU for Frontier

The Center for Accelerated Application Readiness (CAAR) Program at ORNL

Sunita Chandrasekaran
Assistant Professor, Dept. of Computer & Information Sciences

University of Delaware, USA
schandra@udel.edu

OLCF User Group Meeting June 24th, 2021

Application of Interest: PIConGPU

ACK: This research partially used resources of the Oak
Ridge Leadership Computing Facility (OLCF) at the Oak
Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

1 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
2 CASUS, Center for Advanced Systems Understanding, Goerlitz, Germany
3 University of Delaware, Newark, Delaware, USA
4 Lawrence Berkeley National Laboratories, Berkeley, CA, USA
5 Georgia Institute of Technology, Atlanta, GA, USA
6 Oak Ridge National Laboratory, Knoxville, TN, USA

ACK: This work was partly funded by the Center for Advanced Systems
Understanding (CASUS) which is financed by the German Federal Ministry of
Education and Research (BMBF) and by the Saxon Ministry for Science, Art,
and Tourism (SMWK) with tax funds on the basis of the budget approved by
the Saxon State Parliament.”

ACK: We would like to acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time
through the John von Neumann Institute for Computing (NIC) on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).

S. Chandrasekaran 2, 3, A. Debus1, T. Kluge1, R. Widera1, S. Bastrakov1, K. Steiniger1, M. Garten1, M. Werner, J.Kelling1, R.
Pausch1, B. Hernandez6 , F. Meyer2,1, M. Leinhauser 2,3, F. Pöschel2,1, J. Young2,5, B. Worpitz, A. Huebl4, D. Rogers6, G.
Juckeland1, M.Bussmann2,1

ACK: Thank you very much HPE/AMD Center of
Excellence (COE) for your tremendous
hardware/software support!

The Center for Accelerated Application Readiness (CAAR)
Program at ORNL

AMD EPYC CPU + AMD Radeon Instinct GPU.

Frontier has an expected peak performance of 1.5 EFlop/s.
ACK: Felix Meyer, Richard Pausch, HZDR
Still image from an uncut LWFA simulation video using
Summit and 48 V100s using ISAAC 1.5

~ >= 4 x

vs Summit
@ ORNL

What is Particle In Cell on GPU (PIConGPU)
ACK: Vincent Gerber, HZDR, Germany
LWFA, Visualization using ISAAC

PIConGPU‘s impact on real-world applications

Electron acceleration with lasers Ion acceleration with lasers

©
 H

ue
bl

(H
ZD

R
),

M
at

he
so

n
(O

R
N

L)

§ Compact X-Ray sources of high brightness,
e.g. Free-Electron Lasers, to create
snapshots of ultrafast processes in material science.

§ Extend plasma-based electron accelerators
from multi-GeV towards TeV electron energies

§ Applications in radiation therapy of
cancer.

§ Fundamental studies of warm-
dense matter and high-energy
density physics.

PIConGPU Programmatic Challenges

• Portability: Run code on different compute architectures
(single-source, run everywhere)

• Performance: Cannot lose performance while
maintaining portability

• Scalability: Code profiling & scaling tests to ensure
science cases scale to Frontier

• Visualizations: Create and develop tools to visualize
PIConGPU on the new system

• Exascale workflows: Extend I/O capabilities, provide
in-situ analysis, data reduction and visualization
workflows

ACK: Benjamin Hernandez, ORNL
LWFA Simulation. Using Summit’s 8
nodes (48 V100 GPUs) with ~2 billion
particles using ISAAC v1.5.1 running on
OLCF’s cloud environment (SLATE)

PIConGPU Full Software Stack

Huebl, Axel, et al. (2018) Zero Overhead Modern C++ for Mapping to Any Programming Model.
Software Stack updated by René Widera (2020)

template< typename T_Acc
>

ALPAKA_FN_ACC void
operator()(

T_Acc const & acc,
// ...

) const
{

// ...
}

https://zenodo.org/record/1304272

alpaka software

● Open source C++14 header-only library
● alpaka 0.6.0 release - Jan 2021
● New backends: OpenMP 5 target offload and OpenACC

○ This release is adding compatibility to the latest CUDA releases up to
11.2

○ The HIP backend supports HIP 3.5 +
○ Recommendation is to use the latest HIP version

● https://github.com/alpaka-group/alpaka/releases/tag/0.6.0
● Makes kernel performance portability work!

https://github.com/alpaka-group/alpaka/releases/tag/0.6.0

Experimental Setup
• Hardware
– Summit @ ORNL (IBM POWER 9 CPUs + NVIDIA V100 GPUs)
– JUWELS @ JSC (AMD EPYC 7402 24-core processor + NVIDIA A100)
– Spock - AMD/Cray+HPE Early Access System (AMD EPYC AMD EPYC 7662 32-

core processor + AMD Instinct MI100

• Software
– alpaka 0.6.0 (backend OpenMP threading/offloading, OpenACC)
– NVIDIA CUDA 10.1.243 & 11.0
– AMD ROCm 4.1.0 & HIP
– OpenMP Offload compilers and OpenACC

Tools for Profiling and Performance Analysis

• Identifying hot spots in a code (a.k.a. computationally intensive
portions in a code)

• Several tools are available including
– NVIDIA’s nvprof, Nsight Compute v2020.3.0, Nsight Systems v2021.1.1
– AMD’s rocProf

• Benchmarks
– Gpumembench
– BabelStream

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1. A chart representing the percent execution time for different
kernels within PIConGPU’s TWEAC science case. The MoveAndMark
and ComputeCurrent kernels take up over 75% of the overall runtime.

its initial use by creating custom roofline plots for Nsight
Compute to create. In creating the roofline plots shown later
in this report, we utilize the metrics the NERSC Roofline-
on-NVIDIA-GPUs code repository uses [14].

Nsight Systems [9] visually maps an application from
execution to termination. The visualization looks like a time-
line. This timeline is useful for finding out which kernels
take up the most execution time, which bottlenecks exist
in the code, and which kernels under-perform. This work
utilized Nsight Systems to verify the developers’ rationale
about PIConGPU’s most computationally-intensive kernels
and to find out the percentage of runtime those kernels took
up. Figure 1 shows an example of how we visualized the
timeline from Nsight Systems to focus on our kernels of
interest.

2.2 ROCProfiler

The AMD ROCProfiler (rocProf) [10] is a command line
profiling analysis tool that allows the user to get perfor-
mance counters – and derived metrics from those counters
– for an application. The tool works solely for applications
using the ROCm accelerator backend. Unlike the NVIDIA
profiling tools, the rocProfiler is open-source. For this work,
we use rocProf to get the FETCH SIZE, WRITE SIZE, and
SQ VALU INSTS metrics, and the kernel runtimes to con-
struct a roofline model. The FETCH SIZE metric returns the
total number of kilobytes fetched from the GPU memory.
Similarly, the WRITE SIZE metric returns the total number
of kilobytes written to the GPU memory. Before using these
metrics, we convert each value from kilobytes to bytes. The
SQ VALU INSTS metric tells how many instructions are
issued to the GPU.

2.3 Micro-kernel Benchmark Tools

To gather the memory bandwidth for the AMD MI60 and
MI100 devices, we use a variety of micro-kernel benchmark-
ing tools. First, we use the mixbench GPU Benchmark Tool,
or simply mixbench, as a way to evaluate GPUs on mixed
operational intensity kernels [11]. This research project uses
mixbench to evaluate the memory bandwidth of PIConGPU
for a given number of floating point operations per second
(FLOPS). Similar to mixbench, we also use the gpumem-
bench Benchmark Suite, developed by the same authors.
Its purpose is to assess on-chip GPU memory bandwidth
[12]. Using the three programs in the suite, we measure
the instruction throughput, shared memory operations, and

constant memory operations respectively. The final bench-
mark tool we use is BabelStream. Formerly called GPU-
Stream, BabelStream measures memory transfer rates to and
from the global device memory CPUs [13]. BabelStream
differs from other GPU memory bandwidth benchmarks
and benchmarking suites in that it does not include PCIe
transfer time in its results. BabelStream provides memory
bandwidth results that are attainable. That is, given that an
application developer follows the best programming model
practices, they can achieve the memory bandwidth results
BabelStream produces. The output for the copy functions
(808,8975.476 MB/s for the MI60 GPU and 933,355.781 MB/s
for the MI100 GPU), from BabelStream is used to represent
the memory bandwidth for the AMD MI60 and MI100 GPU
instruction roofline models. On the roofline plots we convert
each measurement to GB/s.

3 ROOFLINE MODELS

To analyze the performance of PIConGPU and the weight
these kernels hold in its overall performance, we generate
two different roofline models, a traditional roofline model
and an instruction roofline model. The roofline model was
developed by Williams et al. in 2009 as a simple way to
visually understand an application’s performance in FLOPS
[15] and find bottlenecks in an application. Using a roofline
model we easily know what to optimize within the kernels
we are looking at (implementing those optimizations is
not as easy). Many extensions to the roofline model have
been developed since its inception. Perhaps the most useful
extension to the roofline performance model is the cache-
aware roofline model (CARM) [16]. The CARM extends
the roofline model beyond the traditional DRAM/HBM
measurement to include the cache memories. Typically, only
the L1 and L2 caches are included. To distinguish the CARM
from other types of roofline models, in this report, we refer
to it as the roofline performance model.

For applications that are not floating point intensive, use
many mixed precision operations, and/or use many integer
operations, the roofline performance model can offer very
minimal or no help in suggesting enhancements to achieve
better performance. To address this problem, the instruction
roofline model was developed in 2019 [17]. The instruction
roofline model offers additional performance insights for
an application beyond the roofline performance model such
as access patterns and instruction throughput. Creating an
instruction roofline model is very similar to constructing
a roofline performance model. Instead of calculating max-
imum achieved GFLOPs for the compute ceiling, the max-
imum achieved billions of instructions per second (GIPS)
is calculated. For the memory bandwidth ceiling, instead
of using the measured bandwidth in GB/s, the memory
bandwidth is re-scaled to using billions of transactions per
second (GTXN/s).

4 CONSTRUCTING ROOFLINE MODELS FOR AMD

GPUS

The same metrics used for instruction roofline models on
the NVIDIA V100 cannot be used on the Radeon Instinct
MI60 or AMD Instinct MI100 GPUs. The reason for this is

Execution time (%) for different kernels within PIConGPU’s Traveling-wave electron
acceleration (TWEAC) science case.
The MoveAndMark and ComputeCurrent kernels take up over 75% of the overall runtime

NVIDIA’s Nsight Systems tool
Visualization timeline

Metric: Figure of Merit (FOM) for CAAR- PIConGPU
● Weighted sum of the total number of particle updates per second (90%) and the

number of cell updates per second (10%).

● Taken as an average over a representative number of time steps

~ >= 4 x

NEW TWEAC (June 2021)
Weak Scaling - FOM on ½ Summit @ ORNL
Experimental Setup:

● № Iterations: 1000

● Runtime: ~10 mins
~ 0.5 secs per iteration

● FOM Science case

● Scaling:
○ 1 nodes → 2300 nodes
○ 6 GPUs → 12288 GPUs
○ 98-99% GPU utilization

timesteps 1000

GPUs 12288

cells total 179. 109

cells per GPU 14.6 · 106

particles total 4.4· 1012

particles per GPU 365· 106

NEW TWEAC (June 2021)
Scaling - FOM on ½ Summit @ ORNL – June 2021

NEW Vs OLD TWEAC

• Nov 2019 runs fetched us 6.82 TUP/s VS June 2021 runs fetched us
7.88 TUP/s (half of Summit runs)

• So how did that happen?
– The ability to model the physics accurately (but more computations) for

longer iteration simulations has improved
– A faster (compensating for more computations) and numerically stable

version of the background TWEAC laser field
– A new AOFDTD field solver has been implemented for better numerical

dispersion properties
– CurrentInterpolation filtering step dropped – improves FOM a tad bit

GPU Summit V100 JSC JUWELS
A100

Execution Time (s) 0.089 0.062

GIPS 6.494 9.290

Instruction
Intensity
(insts/transaction)

0.839 0.860

Achieved FP32
(TFLOPS)

4.7 6.044

Achieved FP64
(TFLOPS)

0.633 0.812

NEW TWEAC (June 2021), FOM run on SUMMIT and JUWELS

GPU Summit V100 JSC JUWELS A100

Execution Time (s) 0.204 0.165

GIPS 7.803 9.588

Instruction Intensity
(insts/transaction)

4.183 4.260

Achieved FP32
(TFLOPS)

3.222 3.922

Achieved FP64
(TFLOPS)

Execution time: Lower the better
GIPS and Instruction intensity: Higher the better

Move and Mark Kernel Compute Current Kernel

Takeaway – Summit (V100) and JUWELS (A100)
• MoveAndMark kernel is memory-bound for FP64 and compute-

bound for FP32
• On JUWELS - single precision achieved FLOPS is 40 % of peak theoretical FLOPS, but

greater achieved FLOPS when compared to Summit V100
• On JUWELS – double precision achieved FLOPS is 11% of peak theoretical FLOPS, but

greater achieved FLOPS when compared to Summit V100

• ComputeCurrent kernel is compute-bound for FP32
• On JUWELS - single precision achieved FLOPS is 26 % of peak theoretical FLOPS, but

greater achieved FLOPS when compared to Summit V100

• GIPS increases due to faster runtime
• Increase in instructions issued naturally leads to an increase in the

instruction intensity

Roofline plots and preliminary performance
on the

AMD/Cray+HPE Spock system

Instruction Roofline for AMD GPUs
• Instruction Roofline formula revised from Williams et. al

• Used Vector/Scalar-ALU instruction counters from rocProf
– SQ_INSTS_VALU vs SQ_INSTS_SALU counters

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Designing an Instruction Roo�ine Model for AMD GPUs 3

2.1 Gathering Metrics Using the ROCProfiler

The AMD ROCPro�ler (rocProf) is a command line pro�ling analysis tool. This tool allows the user to get performance
counters – and derived metrics from those counters – for an application. The tool works solely for applications using
the ROCm accelerator backend. The metrics used for deriving IRMs on the NVIDIA V100 cannot be used on the AMD
Radeon Instinct MI60 or AMD Instinct MI100 GPUs. The reason for this is because there is no way to extract the
number of transactions from the L1 cache, L2 cache, or the DRAM/HBM using rocProf. Instead, we use rocProf to
get the FETCH_SIZE, WRITE_SIZE, and SQ_INSTS_VALU metrics, and the kernel runtimes to construct a roo�ine
model. The FETCH_SIZE metric returns the total number of kilobytes (KBs) fetched from the GPU memory. Similarly,
the WRITE_SIZE metric returns the total number of KBs written to the GPU memory. Before using these metrics, we
convert each value from KBs to bytes. The SQ_INSTS_VALU metric tells how many instructions are issued to the GPU.

2.2 Using Metrics to Create a Roofline Model

The IRMs presented here for the AMD MI60 and MI100 GPUs are built o� of the work of Richards et al. [16] from 2020.
Instead of re-scaling the memory bandwidth to GTXN/s, we leave the memory bandwidth in GB/s. Additionally, since
there is no way to extract the number of transactions from rocProf, we use instructions per byte as the measurement
unit on the horizontal axis,instead of instructions per transaction.

To calculate the instruction intensity , measured in instructions per byte, the FETCH_SIZE and WRITE_SIZE metrics
from rocProf are used. The sum of those metrics is then multiplied by the kernel runtime and that quantity divides the
number of wavefront scaled instructions. This is shown in Equation 1.

�=BCAD2C8>=�=C4=B8C~ =
8=BCAD2C8>=B

64
(1~C4B A403 + 1~C4B FA8CC4=) ⇥ AD=C8<4

(1)

To calculate the peak theoretical GIPS, we modify the peak GIPS equation from [11] to work with AMD architecture.
AMD uses the term compute units instead of streaming multiprocessors. The MI60 and MI100 contain 64 and 120 compute
units (CU) respectively. Additionally, AMD GPUs use wavefronts instead of warps. The MI60 and MI100 GPUs each
contain one wavefront scheduler per compute unit (WFS/CU). The theoretical instructions per cycle (IPC) variable is
carried over from [11]. The frequency is measured in gigahertz as shown in Equation 2.

⌧�%(?40: = ⇠* ⇥,�(/⇠* ⇥ �%⇠ ⇥ 5 A4@D4=2~ (2)

The achieved instruction performance (GIPS02⌘84E43) in GIPS is calculated by the formula shown in Equation 3. We
divide by 64 because 64 threads constitute a wavefront in AMD GPUs. The number of instructions is given by the
SQ_INSTS_VALU metric from rocProf.

⌧�%(02⌘84E43 =
8=BCAD2C8>=B

64
1 ⇥ 109 ⇥ AD=C8<4

(3)

The IRMs for AMD GPUs could easily re-scale the bandwidth into GTXN/s as shown for the V100 IRMs, and this
might seem like a more equal comparison, but since we cannot get the number of transactions to use for the instruction
intensity, we did not want to o�er a misleading comparison.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Designing an Instruction Roo�ine Model for AMD GPUs 3

2.1 Gathering Metrics Using the ROCProfiler

The AMD ROCPro�ler (rocProf) is a command line pro�ling analysis tool. This tool allows the user to get performance
counters – and derived metrics from those counters – for an application. The tool works solely for applications using
the ROCm accelerator backend. The metrics used for deriving IRMs on the NVIDIA V100 cannot be used on the AMD
Radeon Instinct MI60 or AMD Instinct MI100 GPUs. The reason for this is because there is no way to extract the
number of transactions from the L1 cache, L2 cache, or the DRAM/HBM using rocProf. Instead, we use rocProf to
get the FETCH_SIZE, WRITE_SIZE, and SQ_INSTS_VALU metrics, and the kernel runtimes to construct a roo�ine
model. The FETCH_SIZE metric returns the total number of kilobytes (KBs) fetched from the GPU memory. Similarly,
the WRITE_SIZE metric returns the total number of KBs written to the GPU memory. Before using these metrics, we
convert each value from KBs to bytes. The SQ_INSTS_VALU metric tells how many instructions are issued to the GPU.

2.2 Using Metrics to Create a Roofline Model

The IRMs presented here for the AMD MI60 and MI100 GPUs are built o� of the work of Richards et al. [16] from 2020.
Instead of re-scaling the memory bandwidth to GTXN/s, we leave the memory bandwidth in GB/s. Additionally, since
there is no way to extract the number of transactions from rocProf, we use instructions per byte as the measurement
unit on the horizontal axis,instead of instructions per transaction.

To calculate the instruction intensity , measured in instructions per byte, the FETCH_SIZE and WRITE_SIZE metrics
from rocProf are used. The sum of those metrics is then multiplied by the kernel runtime and that quantity divides the
number of wavefront scaled instructions. This is shown in Equation 1.

�=BCAD2C8>=�=C4=B8C~ =
8=BCAD2C8>=B

64
(1~C4B A403 + 1~C4B FA8CC4=) ⇥ AD=C8<4

(1)

To calculate the peak theoretical GIPS, we modify the peak GIPS equation from [11] to work with AMD architecture.
AMD uses the term compute units instead of streaming multiprocessors. The MI60 and MI100 contain 64 and 120 compute
units (CU) respectively. Additionally, AMD GPUs use wavefronts instead of warps. The MI60 and MI100 GPUs each
contain one wavefront scheduler per compute unit (WFS/CU). The theoretical instructions per cycle (IPC) variable is
carried over from [11]. The frequency is measured in gigahertz as shown in Equation 2.

⌧�%(?40: = ⇠* ⇥,�(/⇠* ⇥ �%⇠ ⇥ 5 A4@D4=2~ (2)

The achieved instruction performance (GIPS02⌘84E43) in GIPS is calculated by the formula shown in Equation 3. We
divide by 64 because 64 threads constitute a wavefront in AMD GPUs. The number of instructions is given by the
SQ_INSTS_VALU metric from rocProf.

⌧�%(02⌘84E43 =
8=BCAD2C8>=B

64
1 ⇥ 109 ⇥ AD=C8<4

(3)

The IRMs for AMD GPUs could easily re-scale the bandwidth into GTXN/s as shown for the V100 IRMs, and this
might seem like a more equal comparison, but since we cannot get the number of transactions to use for the instruction
intensity, we did not want to o�er a misleading comparison.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Designing an Instruction Roo�ine Model for AMD GPUs 3

2.1 Gathering Metrics Using the ROCProfiler

The AMD ROCPro�ler (rocProf) is a command line pro�ling analysis tool. This tool allows the user to get performance
counters – and derived metrics from those counters – for an application. The tool works solely for applications using
the ROCm accelerator backend. The metrics used for deriving IRMs on the NVIDIA V100 cannot be used on the AMD
Radeon Instinct MI60 or AMD Instinct MI100 GPUs. The reason for this is because there is no way to extract the
number of transactions from the L1 cache, L2 cache, or the DRAM/HBM using rocProf. Instead, we use rocProf to
get the FETCH_SIZE, WRITE_SIZE, and SQ_INSTS_VALU metrics, and the kernel runtimes to construct a roo�ine
model. The FETCH_SIZE metric returns the total number of kilobytes (KBs) fetched from the GPU memory. Similarly,
the WRITE_SIZE metric returns the total number of KBs written to the GPU memory. Before using these metrics, we
convert each value from KBs to bytes. The SQ_INSTS_VALU metric tells how many instructions are issued to the GPU.

2.2 Using Metrics to Create a Roofline Model

The IRMs presented here for the AMD MI60 and MI100 GPUs are built o� of the work of Richards et al. [16] from 2020.
Instead of re-scaling the memory bandwidth to GTXN/s, we leave the memory bandwidth in GB/s. Additionally, since
there is no way to extract the number of transactions from rocProf, we use instructions per byte as the measurement
unit on the horizontal axis,instead of instructions per transaction.

To calculate the instruction intensity , measured in instructions per byte, the FETCH_SIZE and WRITE_SIZE metrics
from rocProf are used. The sum of those metrics is then multiplied by the kernel runtime and that quantity divides the
number of wavefront scaled instructions. This is shown in Equation 1.

�=BCAD2C8>=�=C4=B8C~ =
8=BCAD2C8>=B

64
(1~C4B A403 + 1~C4B FA8CC4=) ⇥ AD=C8<4

(1)

To calculate the peak theoretical GIPS, we modify the peak GIPS equation from [11] to work with AMD architecture.
AMD uses the term compute units instead of streaming multiprocessors. The MI60 and MI100 contain 64 and 120 compute
units (CU) respectively. Additionally, AMD GPUs use wavefronts instead of warps. The MI60 and MI100 GPUs each
contain one wavefront scheduler per compute unit (WFS/CU). The theoretical instructions per cycle (IPC) variable is
carried over from [11]. The frequency is measured in gigahertz as shown in Equation 2.

⌧�%(?40: = ⇠* ⇥,�(/⇠* ⇥ �%⇠ ⇥ 5 A4@D4=2~ (2)

The achieved instruction performance (GIPS02⌘84E43) in GIPS is calculated by the formula shown in Equation 3. We
divide by 64 because 64 threads constitute a wavefront in AMD GPUs. The number of instructions is given by the
SQ_INSTS_VALU metric from rocProf.

⌧�%(02⌘84E43 =
8=BCAD2C8>=B

64
1 ⇥ 109 ⇥ AD=C8<4

(3)

The IRMs for AMD GPUs could easily re-scale the bandwidth into GTXN/s as shown for the V100 IRMs, and this
might seem like a more equal comparison, but since we cannot get the number of transactions to use for the instruction
intensity, we did not want to o�er a misleading comparison.

Manuscript submitted to ACM

CU: compute unit
WFS: wavefront schedulers
IPC: Instructions per cycle

Instruction Roofline for AMD MI100 GPUs

Move and Mark Kernel Compute Current Kernel

GPU V100 MI100

Execution Time (s) 0.089 0.098

GIPS 6.494 4.633

Instruction Intensity
(insts/byte)

0.029 0.217

FP32 (TFLOPS) 4.70 -

FP64 (TFLOPS) 0.631 -

(Work in progress, Pls do not distribute)

NEW TWEAC (June 2021) FOM run
Execution time: Lower the better
GIPS and Instruction intensity: Higher the better

GPU V100 MI100

Execution Time (s) 0.204 0.208

GIPS 7.803 5.033

Instruction Intensity
(insts/byte)

0.140 0.421

FP32 (TFLOPS) 3.22 -

FP64 (TFLOPS) -

Move and Mark Kernel Compute Current Kernel

Takeaway – AMD MI100s

• Execution time for the V100s and the MI100s are neck-to-
neck

• GIPS is higher for the V100s compared to MI100
• Instruction/byte higher for the MI100s compared to the

V100s
– Depends on the number of bytes fetched from/to GPU memory
– (note: on the NVIDIA GPUs, one would usually measure

instruction/transaction, so those numbers were converted to
instructions/byte, just fyi)

Offloading status – PIConGPU

• OpenMP offload and PIConGPU
– Clang (and AOMP) offload to x86_64 works so far

• AOMP target offload – bugs, work in progress
– With Cray CCE omp offload there is a linker error

• HPE helping fix; work in progress

• OpenACC and GPU
– NVHPC to GPUs gives a compiler (and/or runtime error)
– NVHPC 21.1 to x86_64 works

PIConGPU I/O – Summit & Spock

Memory utilization at node level Summit

Data Preparation
Strategy

GPUs Total GPU
Memory
used (GB)

Total RAM
used (GB)

Total RAM used
during I/O (GB)

Double buffer 6 96 ≈ 210 ≈ 490

Double buffer 4 64 ≈ 146 ≈ 335

Mapped memory 4 64 ≈ 98 ≈ 232*

*Under Spock’s RAM limit

Data
Preparation
Strategy

GPUs Total GPU
Memory used
(GB)*

Total RAM
used per node
(GB)

Total RAM
used during
I/O per
node (GB)

Runtime (s)
Compression
OFF

Runtime (s)
Compression
ON (BLOSC)**

Mapped
memory

4 64 ≈ 30 ≈ 212 1977.753 1915.116

Mapped
memory

16 256 ≈ 30 ≈ 212 1918.01 1910.85

Some I/O numbers on Spock

Summary

● A100 shows greater FLOP performance over V100
● Acknowledging A100 is not similar to MI100 ;-)
● MI100 is neck-to-neck with V100 for execution time
● Looking forward to using enhanced performance and

analysis tools on Frontier
● Need directive-based programming models

compiling/executing
● Need increased memory ratio between main and GPU

memory on Frontier to tackle I/
● Need tools like ISAAC in-situ library & facilities on

Frontier
● Looking forward to pushing Frontier boundaries with

PIConGPU case studies

Open Source software(s)

Credit: Felix Meyer, Music: Richard
Pausch
Real-Time Vector Field Visualization
test using HZDR Hemera Cluster with 4
NVIDIA V100.

Credit: Felix Meyer, Music: Richard Pausch
Real-Time Vector Field Visualization test using HZDR Hemera Cluster with 4 NVIDIA V100.
The video highlights the LWFA Simulation - (Laser Wakefield Accelerator) of PIConGPU visualized with in-situ visualization library ISAAC.

Nicholas Malaya, Tim Mattox, Luke Roskop, Adam
Lavely, Noah Wolfe, Noah Reddell and team for your
tremendous support!!!

Looking forward to our continued collaborations! :-)

Credit: Felix Meyer, Music: Richard Pausch
Real-Time Vector Field Visualization test using HZDR
Hemera Cluster with 4 NVIDIA V100.
The video highlights the LWFA Simulation - (Laser
Wakefield Accelerator) of PIConGPU visualized with
in-situ visualization library ISAAC.

GitHub is our Social Network

ACK: This research partially used resources of the Oak
Ridge Leadership Computing Facility (OLCF) at the Oak
Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

ACK: This work was partly funded by the Center for Advanced Systems
Understanding (CASUS) which is financed by the German Federal Ministry of
Education and Research (BMBF) and by the Saxon Ministry for Science, Art,
and Tourism (SMWK) with tax funds on the basis of the budget approved by
the Saxon State Parliament.”

ACK: Thank you very much HPE Cray/AMD Center of Excellence (COE) for
your tremendous hardware/software support!

